Read this article to learn about how to detect the expression of one particular protein of a cell.

Identification of a specific protein in a complex mixture of proteins can be accomplished by a technique known as Western blotting, named for its similarity to Southern blotting, which detects DNA fragments, and Northern blotting, which detects mRNAs.

In Western blotting, a protein is electrophoretically separated on gel (denaturing conditions or native/ non-denaturing conditions).

The proteins are then transferred to a membrane (typically nitrocellulose or PVDF), where they are probed (detected) using antibodies specific to the target protein. The Ag-Ab complexes that form on the band containing the protein recognized by the antibody can be visualized in a variety of ways. If the protein of interest was bound by a radioactive antibody, its position on the blot can be determined by exposing the membrane to a sheet of X-ray film, a procedure called autoradiogra­phy.

However, the most generally used detection procedures employ enzyme-linked antibodies against the protein. After binding of the enzyme-antibody conjugate, addition of a chromogenic substrate that produces a highly coloured and insoluble product causes the appearance of a col­oured band at the site of the target antigen. The site of the protein of interest can be determined with much higher sensitivity if a chemiluminescent compound along with suitable enhancing agents is used to produce light at the antigen site.

Western blotting can also identify a specific antibody in a mixture. In this case, known antigens of well-defined molecular weight are separated by SDS-PAGE and blotted onto nitrocellulose. The separated bands of known antigens arc then probed with the sample suspected of containing antibody specific for one or more of these antigens.

Reaction of an antibody with a band is detected by using either radiolabeled or enzyme-linked secondary antibody that is specific for the species of the antibodies in the test sample. The most widely used application of this procedure is in confirmatory testing for HIV, where Western blotting is used to determine whether the patient has antibodies that react with one or more viral proteins.

clip_image002_thumb2

The method originated from the laboratory of George Stark at Stanford. The name Western blot was given to the technique by W Neal Burnette.

Steps in a Western Blot:

Tissue Preparation:

Samples may be taken from whole tissue or from cell culture or from cell lysate. In most cases, solid tissues are first broken down mechanically using a blender (for larger sample volumes), using a homogenizer (smaller volumes), or by sonication. Cells may also be broken open by one of the above mechanical methods.

Assorted detergents, salts, and buffers may be employed to encourage lysis of cells and to solubilize proteins. Protease and phosphatase inhibitors are often added to prevent the digestion of the sample by its own enzymes. A combination of biochemical and mechanical techniques — including various types of filtra­tion and centrifugation can be used to separate different cell compartments and organelles.

Gel Electrophoresis:

The proteins of the sample are separated using gel electrophoresis. Separation of proteins may be by isoelectric point (pi), molecular weight, electric charge, or a combination of these factors. The nature of the separation depends on the treatment of the sample and the nature of the gel (for details please refer to “electrophoretic technique”).

By far the most common type of gel electrophoresis employs polyacrylamide gels and buffers loaded with sodium dodecyl sulphate (SDS). SDS-PAGE (SDS polyacrylamide gel electrophoresis) maintains polypeptides in a denatured state once they have been treated with strong reducing agents to remove secondary and tertiary structure (e.g., S-S disulphide bonds to SH and SH) and thus allows separation of proteins by their molecular weight.

Sampled proteins become covered in the negatively charged SDS and move to the positively charged electrode through the acrylamide mesh of the gel. Smaller proteins migrate faster through this mesh and the proteins are thus separated according to size (usually measured in kilo daltons, kDa). The concentration of acrylamide deter­mines the resolution of the gel — the greater the acrylamide concentration the better the resolution of higher molecular weight proteins. Proteins travel only in one dimension along the gel for most blots.

Samples are loaded into wells in the gel. One lane is usually reserved for a marker or ladder, a commercially available mixture of proteins having defined molecular weights, typically stained so as to form visible, coloured bands. When voltage is applied along the gel, proteins migrate into it at different speeds. These different rates of advancement (different electrophoretic mobilities) sepa­rate into bands within each lane.

It is also possible to use a two-dimensional (2-D) gel which spreads the proteins from a single sample out in two dimensions. Proteins are separated according to isoelectric point (pH at which they have neutral net charge) in the first dimension, and according to their molecular weight in the second dimension.

Transfer:

In order to make the proteins accessible to antibody detection, they are moved from within the gel onto a membrane made of nitrocellulose or PVDF. The membrane is placed on top of the gel resting on stack of paper towels, and a stack of tissue papers placed on top of that. The entire set­up is placed in a buffer solution which moves up the paper by capillary action, bringing the proteins with it.

Another method for transferring the proteins is called electro blotting and uses an electric current to pull proteins from the gel into the PVDF or nitrocellulose membrane. The proteins have now moved from within the gel onto the membrane while maintaining the organization they had within the gel. As a result of this “blotting” process, the proteins are exposed on a thin surface layer for detection.

Both varieties of membrane are chosen for their non-specific protein binding prop­erties (i.e., binds all proteins equally well). Protein binding is based upon hydrophobic interactions as well as charged interactions between the membrane and protein. Nitrocellulose membranes are cheaper than PVDF, but are far more fragile and do not stand up well to repeat probing’s.

The uniformity and overall effectiveness of transfer of protein from the gel to the membrane can be checked by staining the membrane with Coomassie or Ponceau S dyes. Coomassie is the more sensitive of the two, although Ponceau S’s water solubility makes it easier to subsequently destain and probe the membrane.

Blocking:

Since the membrane has been chosen for its ability to bind protein, and both antibodies and the target are proteins, steps must be taken to prevent interactions between the membrane and the antibody used for detection of the target protein. Blocking of non-specific binding is achieved by placing the membrane in a dilute solution of protein – typically Bovine serum albumin (BSA) or non-fat dry milk (both are inexpensive), with a minute percentage of detergent such as Tween 20.

The protein in the dilute solution attaches to the membrane in all places where the target proteins have not attached. Thus, when the antibody is added, there is no room on the membrane for it to attach other than on the binding sites of the specific target protein. This reduces “noise” in the final product of the Western blot, leading to clearer results, and eliminates false positives.

Detection:

During the detection process the membrane is “probed” for the protein of interest with a modi­fied antibody which is linked to a reported enzyme, which when exposed to an appropriate substrate drives a colorimetric reaction and produces a colour. For a variety of reasons, this traditionally takes place in a two-step process, although there are now one-step detection methods available for certain applications.

(A) Two-step processing:

1. Primary antibody probing:

Antibodies are generated when a host species or immune cell culture is exposed to the protein of interest (or a part thereof). Normally, this is part of the immune response; whereas here they are harvested and used as sensitive and specific detection tools that bind the protein directly.

After blocking, a dilute solution of primary antibody (generally between 0.5 and 5 micrograms/ ml) is incubated with the membrane under gentle agitation. Typically, the solution is comprised of buffered saline solution with a small percentage of detergent, and sometimes with powdered milk or BSA.

The antibody solution and the membrane can be sealed and incubated together for any­where from 30 minutes to overnight. It can also be incubated at different temperatures, with warmer temperatures being associated with more binding, both specific (to the target protein, the “signal”) and non-specific (“noise”).

2. Secondary antibody probing:

After rinsing the membrane to remove unbound primary antibody, the membrane is exposed to another antibody, directed at a species-specific portion of the primary antibody. This is known as a secondary antibody, and due to its targeting properties, tends to be referred to as “anti-mouse,” “anti-goat,” etc. Antibodies come from animal sources (or animal sourced hybridoma cultures); an anti-mouse secondary will bind to just about any mouse-sourced primary antibody.

This allows some cost savings by allowing an entire lab to share a single source of mass-produced antibody, and provides far more consistent results. The secondary antibody is usually linked to biotin or to a reported enzyme such as alkaline phosphatase or horseradish peroxidase. This means that several secondary antibodies will bind to one primary antibody and enhances the signal.

Most commonly, a horseradish peroxidase-linked secondary is used in conjunction with a chemiluminescent agent, and the reaction product produces luminescence in proportion to the amount of protein. A sensitive sheet of photographic film is placed against the membrane, and exposure to the light from the reaction creates an image of the antibodies bound to the blot.

As with the ELISPOT and ELISA procedures, the enzyme can be provided with a substrate molecule that will be converted by the enzyme to a coloured reaction product that will be visible on the membrane. A third alternative is to use a radioactive label rather than an enzyme coupled to the secondary antibody. Since other methods are safer, quicker and cheaper this method is now rarely used.

(B) One step processing:

Historically, the probing process was performed in two steps because of the relative ease of pro­ducing primary and secondary antibodies in separate processes. This gives researchers and corpora­tions huge advantages in terms of flexibility, and adds an amplification step to the detection process. Given the advent of high-throughput protein analysis and lower limits of detection, however, there has been interest in developing one-step probing systems that would allow the process to occur faster and with less consumable.

This requires a probe antibody which both recognizes the protein of interest and contains a detectable label probes which are often available for known protein tags. The primary probe is incubated with the membrane in a manner similar to that for the primary antibody in a two-step process, and then is ready for direct detection after a series of wash steps.

Detection:

1. Colorimetric detection:

The colorimetric detection method depends on incubation of the Western blot with a substrate that reacts with the reporter enzyme (such as peroxidase) that is bound to the secondary antibody. This converts the soluble dye into an insoluble form of a different colour that precipitates next to the enzyme and thereby stains the nitrocellulose membrane. Development of the blot is then stopped by washing away the soluble dye. Protein levels are evaluated through densitometry (how intense the stain is) or spectrophotometry.

2. Chemiluminescence:

Chemiluminescent detection methods depend on incubation of the Western blot with a substrate that will luminesce when exposed to the reporter on the secondary antibody. The light is then detected by photographic film, and more recently by CCD cameras which captures a digital image of the Western blot.

The image is analysed by densitometry, which evaluates the relative amount of protein staining and quantifies the re­sults in terms of optical density. Newer software allows further data analysis such as molecular weight analysis if appropriate standards are used. So-called “enhanced chemiluminescent” (ECL) detection is considered to be among the most sensitive detection methods for blotting analysis.

clip_image004_thumb2

3. Radioactive detection:

Radioactive labels do not require enzyme substrates, but rather allow the placement of medical X-ray film directly against the Western blot which develops as it is exposed to the label and creates dark regions which correspond to the protein bands of interest (see image to the right). The im­portance of radioactive detection methods is declining, because it is very expensive, health and safety risks are high and ECL provides a useful alternative.

4. Fluorescent detection:

The fluorescently labelled probe is excited by light and the emission of the excitation is then de­tected by a photo sensor such as CCD camera equipped with appropriate emission filters which captures a digital image of the Western blot and allows further data analysis such as molecular weight analysis and a quantitative Western blot analysis. Fluorescence is considered to be among the most sensitive detection methods for blotting analysis.

Analysis:

After the unbound probes are washed away, the western blot is ready for detection of the probes that are labelled and bound to the protein of interest. In practical terms, not all westerns reveal protein only at one band in a membrane. Size approximations are taken by comparing the stained bands to that of the marker or ladder loaded during electrophoresis.

The process is repeated for a structural protein, such as actin or tubulin that should not change between samples. The amount of target protein is indexed to the structural protein to control between groups. This practice ensures correction for the amount of total protein on the membrane in case of errors or incomplete transfers.

clip_image006_thumb2

Secondary Probing (Stripping):

One major difference between nitrocellulose and PVDF membranes relates to the ability of each to support “stripping” antibodies off and reusing the membrane for subsequent antibody probes. While there are well-established protocols available for stripping nitrocellulose membranes, the sturdier PVDF allows for easier stripping, and for more reuse before background noise limits experiments.

Avoid over stripping the membrane, as target proteins may be lost from the blot during extended incubations. Membrane scanning 9 is done regularly to determine when stripping is complete. If over stripping is a problem, try reducing the amount of SDS in the stripping buffer.

Depending on the strength of the antibody-antigen interactions, one needs to optimize the strin­gency of stripping protocol. Another difference is that, unlike nitrocellulose, PVDF must be soaked in 95% ethanol, isopropanol or methanol before use. PVDF membranes also tend to be thicker and more resistant to damage during use.

Medical Diagnostic Applications:

1. The confirmatory HIV test employs a Western blot to detect anti-HIV antibody in a human serum sample. Proteins from known HIV-infected cells are separated and blot­ted on a membrane as above. Then, the serum to be tested is applied in the primary antibody incubation step; free antibody is washed away, and a secondary anti-human antibody linked to an enzyme signal is added. The stained bands then indicate the pro­teins to which the patient’s serum contains antibody.

2. A Western blot is also used as the definitive test for Bovine spongiform encephalopathy (BSE, commonly referred to as ‘mad cow disease’).

3. Some forms of Lyme disease testing employ Western blotting.